7 research outputs found

    An integrated MRP and finite scheduling system to derive detailed daily schedules for a manufacturing shop

    Get PDF
    Many companies rely on Material Requirements Planning (MRP) to support their Production Scheduling and Control (PS&C) functions. Since MRP does not provide a detailed shop floor schedule, these users have to implement either a third party procedure or an internally developed procedure for shop floor controls. In this thesis we consider a class of user shops which are characterized by the following features: Homogenous machines, that is all machines can produce all products. Each product requires a setup, but several products may have a common setup. MRP requirements are specified on a weekly basis while actual requirements are specified on a hourly basis. Specifically, we develop a MRP and Finite Scheduling System (MFSS) which calculates the weekly net change requirements of products, then generates the detailed daily job order schedules, and finally sequences jobs on machine queues. The objectives of the system are to maximize the utilization of the machines and to minimize setup times. The MFSS was programmed on a personal computer-based system utilizing off-the-shelf relational database software

    Defining the role of common variation in the genomic and biological architecture of adult human height

    Get PDF
    Using genome-wide data from 253,288 individuals, we identified 697 variants at genome-wide significance that together explained one-fifth of the heritability for adult height. By testing different numbers of variants in independent studies, we show that the most strongly associated ∼2,000, ∼3,700 and ∼9,500 SNPs explained ∼21%, ∼24% and ∼29% of phenotypic variance. Furthermore, all common variants together captured 60% of heritability. The 697 variants clustered in 423 loci were enriched for genes, pathways and tissue types known to be involved in growth and together implicated genes and pathways not highlighted in earlier efforts, such as signaling by fibroblast growth factors, WNT/β-catenin and chondroitin sulfate-related genes. We identified several genes and pathways not previously connected with human skeletal growth, including mTOR, osteoglycin and binding of hyaluronic acid. Our results indicate a genetic architecture for human height that is characterized by a very large but finite number (thousands) of causal variants

    Genetic studies of body mass index yield new insights for obesity biology

    Get PDF
    Note: A full list of authors and affiliations appears at the end of the article. Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P 20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.</p

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016): part one

    No full text
    corecore